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CONTROLLED SEARCH OF A MOVING OBJECT* 

F. L. CHERNOUS'KO 

Certain problems of motion control, called prublems of seeking a moving object, are 
stated and solved. A control of the first object's motion is determined, under 
which a second controlled object is found whose motion the first object does not 
know. Conditions guaranteeing a successful completion of the search are established. 
Similar problems in differential games with mixed strategies were examined, for ex- 
ample, in /l- 3/;a guaranteeing approach is used in the present paper. 

1. We consider the motion of two controlled objects X and Y, described by the equa- 
tions and initial conditions 

x: 5’ == u, 5 (to) = 5; I-: y' = u, y (to) = y” (1.1) 

Here z and y are the objects' n-dimensional phase vectors, ,I and v are their velocit- 
ies, the dot denotes derivatives with respect to time t, and to,? and y" are the initial 
data. Objects X and Y can choose their own velocities u(t) and v(t) when t > to so as to 
satisfy the following constraints: a) the functions u(1) and l'(t) are piecewise-continuous 
for t >to; b) the inclusions 

u (t) E OS (x (49 t)3 1’ (G EI- Q, (Y (4, t) (1.2) 

reflecting the structure of the right hand sides of Eqs. (1.1) and the constraints on the 
objects' controls are fulfilled for all t>ff,; c) the objects' motions satisfy the constraints 

.x(t) E D,, y(f) E D, (1.3) 

for t),tn. Here Q*(s,t) and Q,(y, t) are prescribed closed sets in an n-dimensional space, 
which may depend on 5 and t. The initial data in (1.1) satisfy the conditions x”c~D, and 

y“ ED,. When actual problems are being considered Q. and Q, are taken as spheres with 
center at the origin, while sets D,and D,, coincide. Then constraints (1.2) become 

1 u (t) 1 4 u, 1 u (t) 1 :< b (1.4) 

where CT and V are the maximum possible equal constant velocities of objects X and Y. Con- 
straints (1.3) become 

z(t)~D, y(t)~D, t>to (1.5) 

where D is a prescribed closed set in n-dimensional space, in which the two objects can 
move. 

Controls u(t) and v(t) satisfying the conditions a) - c) are called admissible. An 
admissible piecewise-smooth trajectory z(t) or y(t) corresponds to each admissible control 
11 (t) or v (t) . We assume that X can observe Y at instant t if and only if the observation 
condition 

(2 Oh Y (0) E Jf (1.6) 

where iI is a prescribed set in a 2n-dimensional space. We present two examples of condition 
(1.6), reflecting real limitations on the possibility of observation. 

a) Let observation be possible only if the objects are within a specified distance 1 
from each other. Then condition (1.6) is 

I = (0 - Y (4 I < 1 (1.7) 

b) Let a set E(t), impermeable to observation, be specified in the n-dimensional phase 
space; the set ( a collection of barriers , possibly mobile or of changing form) may be time 
dependent. Observation is possible only under direct sight, i.e., when the interior of the 
segment XY joining points z(t) andy(t) no points in common with barrier E. Condition 
(1.6) becomes 

( 0 is the empty set). 
(X (4 Y (0) I- E (t) = 0 (1.8) 

*Prikl.Matem.Mekhan., 44, No.1, 3-12,198O 

1 



F.L. Chernous'ko 

We pose the problem of X seeking 1'. 

Problem 1, Find an initial vector 9 ,_I D,, a number T, to, and an admissible control 
u(t)of object X on interval Ito, Tl, for which the fulfilment of condition (1.6) at some inst- 

ant t f[to, T] is guaranteed under any initial vector y" ED, and any admissible control u(t) 

of object Y on [to,Tl. 
We note that X must choose its control u(t) in the form of a program, relying only on 

knowledge of domains Q*, Qy,Dlr D, and Mfrom (1.2), (1.3) and (1.6), having no information 
either on Y's control u(f) or on Y's initial or current state. Obviously, the control that 
solves this problem will ensure the determination of any number (finite or infinite)of objects 

Y differing in initial data y' and admissible controls u(t). Problem 1 is one of guaranteed 

search; similar problems (e.g., "the princess and the monster" games; see /l/) were analyzed 

within the framework of mixed strategies /2,3/. As a rule Problem 1 either has no solution or 

has an infinite set of solutions. To pick out a single solution it is natural to impose furth- 

er the requirement that some functional, search time, for instance, be optimal. 

Problem 2, Find an initial vector x0 ED, and an admissible control u (t) under which 
Problem1 has a solution with smallest possible 2'. 

A number of typical concrete search problems have been solved below. 

2, We consider a search problem in a plane (n = 2) under constraints (1.4) and (1.5) and 

search termination condition (1.7). The domain D in (1.5) is assumed bounded, closed and 
convex; its boundary is denoted I'. At first we describe the control methodbeingproposedand 
next,weshow the conditions on the parameters entering into it, under which Problem 1 can be 

solved. Among all the directions of motion in the plane we find that one onto which the pro- 

jection of domain D has minimal length. We choose a Cartesian coordinate system Ox,x,such that 
the axis Ox, is along the direction mentioned and domain D lies in the strip 0 -_<x, <ad, where 

d is the length of the minimal projection of domain D. By construction each of the straight 

lines x1 = 0 and xi = d contains at least one point of boundary r. The points of r, lying 

on the straight lines x1 = 0 and x1 m: d, form segments r, and rl, respectively, (possibly, 

of zero length). Let us prove that a straight line x2 = const exists, intersecting both seg- 

ments ro and rl. If it did not we could find a straight line x2 = const such that segments To 

and rr lay on different sides of it. But then we can turn domain D around some point of this 

straight line so that the whole domain is found to be strictly within the strip 0 <x1 -<d; but 

this contradicts the fact that d is the minimal projection of domain D. 

As axis Ox, we select a straight line x2 = con& intersecting both T,, and I',; then 0 ET 

(Fig-l). Such a choice of coordinate system implies a rotation and a translation and does not 

change relations (l.l), (1.4) and (1.7); therefore, there is no loss of generality. As A0 and 
A,we take points on r having the largest and the smallest coordinate x2 equalling x2+ and x2-, 

respectively, (the choice of these points may not be unique). Domain D can be specified by 

the inequalities 
0 \ f-(x2) < x1 < f’ (xp) d d, x-2 < ~2 < 9’2’ (2.1) 

where f-and f' are functions continuous in the interval (x~-,zz'), specifying two branches of 

boundary r. 
We take positive numbers e and h such that a < 1 and a,(dl2, 

3: ‘1 d* 

GL 

while h is sufficiently small; these numbers are made specific below. 
We define curves r-andr+by the relations 

r- r* 
r+: x1 = f* (xS) + F (x2), x,-< s,< xS+ (2.2) 

n F (4 = max IO, a + V+(x,) - f-(x2) - dl / 2) 

iia 'a 
Curves r-and T+lie in domain D and are distant by no more than a from 

d =i 
the corresponding branches (2.1) or boundary p. The distance bet- 

4 
weenr-and I'+ along the x,-axis lies between the limits IO, d - 2al. 

4 

We construct a polynomial line 
h 

AJI...A~, where AY : A,, the odd 

~ 4 vertices A,,As, . . . lie onr-and the even vertices A,, A,,... lie on I‘+. 

4, The coordinates z2 of points Ai increase withi by the amount h, and by 

Fig.1 
not more than h when passing from ‘4 y-1 to .4 N. This polygonal line 
describes the path of point X; the magnitude of the motion's velocity 
is specified as maximum: 1 u(t) 1 = U. Thus, pointX scans domain D 

with a step equal to h along the x,-axis, 
of the domain (Fig.1). 

leaving out fields of width F(x,)<e on each side 
The fields' width equals a only where f- -= 0 and i+=,$ as follows 

from (2.1) and (2.2). In particular, it equals a when z, = 0 because we chose the coordinate 
system such that f-(O) : 0 and f+(O) = (1. 

3, We pass to the determination of parameters a and h; for this we first consider the 
caseof a rectangular domain D, in which case f- -0 and f’z d in (2.1). We set IL ~2 0 as 
well and we consider the motion of point X along the segment [a.d-2a] of the z,-axis, with vel- 
ocity U, where the velocity's direction reverses at the segment's endpoints. Let us ascertain 
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the conditions under which object Y can intersect the Xl-axis, avoiding observation, i.e., 

staying at a distance greater than 1 from X. We see thatY most easily intersects the x,- 

axis unnoticed by moving along boundary I', since then it will have available the longest time, 

equal to -2(d--2a)lU, before the next return of X on the segment's boundary. Thus, at the 

initial instant t = 0 let Y occupy the position y, = 0, y,<--(~2-a2)'/* outside the l-neighbor- 

hood ofX and, moving along the y,-axis, suppose that it must reach the point Y, = 0, Yz > 
(P- u*)'/z in time 2(d -(2a)/ U, remaining outside neighborhood (1.7) at all times. It is obv- 

ious that is sufficies to construct Y's motion on the time interval [O, (d -2e)/U],that allows 
it to avoid observation and to reach point 0. Then by symmetry we can construct the second 
half of the motion as the odd function Y& - (d - 2a) / Ul. Since when t &O,(d - 2a)/U] obj- 
ectX moves by the rule x, = a + Ut, the boundary of its l-neighborhood moves on the x1- 

axis by the law 

x.2 = g(t) zs - [P - (a ;- Ut)?]'!,, t E [O, t'], t' - 1 y a (3.1) 

The derivative g'(t) of function (3.1) grows monotonically from u,, = sU(la_c2)-':~ to a, on in- 

terval IO, t’l and takes the value V when 

t = t" = VU_'(UZ + V2)-'/J _ &_l< t’ (3.2) 

Y’s motion along the y,-axis must satisfy the inequalities y,(t)< g(t)and y2’(t)< 1. and must 

reach y, = 0 in time t,. 

We obtain the lower bound t,by solving a time-optimal problem under the constraints indic- 

ated. To do this we examine all possibilities_ 

t< t” 
If ug< V (i.e., t”>O in (3.2)), then for 

objectY moves by the law y, = g(t) from (3.1), with a velocity less than V, and for 

t E It", t,] with maximum velocity V. If, however, uO> V and t” GO, then Y moves with 
velocity Y for t E [O, t*l. As a result we obtain 

t, = t" - g (t”) v-1 (IL,< v, t” > 0) (3.3) 

t* = - g (0) Y-' (u0 > v, t” \( 0) 

Object Y can avoid observation under the condition t, < (d - 2a) u-1. With due regard to (3.1) 
--(3.3) this inequality reduces to 

'p (1u, h) = (lx, + Za)l-’ < cl-‘, w = vu-‘, h. = al-’ 

cp (20, X.) = (1 7. z$)'!~w-' + /;, k < b" = IU (1 b //:?)-'ig 

cp (w, h) = (1 - h2)'%-' + 21, k > /I’o 

(3.4) 

Object X can choose parameter a (or li in (3.4)) so as to maximize cp(w,Ia)over 1:&O, I]. 
This narrows down the ranges of Uand V under which Y can intersect the x,-axis, avoiding 
observation. The required maximum is achieved at a single point li, and equals 

'p * = max,Gf,s,cp (w, k) = 'p (w, /a.,) = (1 + 4w2)"~w-' (3.5) 

k* = 2w (1 + 4w2)-'I,, x0 < li, < 1 

From (3.4) and (3.5) it follows that if the inequality 'p*< dl-I, is fulfilled, then Y, moving 
in the manner indicated, can intersect the x,-axis avoiding observation. Under the reverse 
inequality 'P* > dl-’ which by (3.5) is 

(1 + &Da)' ,w-1 > al-1 (3.6) 

X can observe Y is the latter intersects the x,-axis. For this, according to (3.4) and (3.51, 

the quantity a must be chosen as 

a = k,l = 2w (1 + 4wz)-‘121 < 1, w = Vu-1 (3.7) 

Condition (3.6) can be solved with respect to w = VU-* 

(V / q* [(d / 1)2 - 41 < 1 (3.8) 

Inequality (3.8) is fulfilled automatically if the simpler and cruder condition 

Y/U<l/d (3.9) 

is fulfilled. 

4, We return to the general case of a convex closed bounded domain D and assume that 
condition (3.8) is satisfied. Let the search be conducted as described in section 2 and let 

U be chosen in accord with (3.7), while h is sufficiently small. At each scanning step the 

situation is similar to that which obtained when h = 0, where the fields' width nowhere ex- 

ceeds a, which only restricts the possibilities for object Y. Therefore, obviously, when h 
is sufficiently small Y cannot be found on the same straight line z,=const withX without 

being noticed by it. Consequently, the search is successfully completed and inequality (3.8) 
(and, all the more, (3.9)) is a sufficient condition for a successful completion of the search. 
The search time T depends on h and equals the length of the polygonal line AdA,...A~, divided 

by U. 
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Let us consider the limiting cases of inequality (3.8). If d.<21, then (3.83 is ful- 

filled for any V, U>O. In this case the search is scan-free. Object X can move with a*1 
arbitrarily small velocity U so that both branches (2.1) of boundary T are at distances I10 

greater than I from it, for example, along the curve Z, = [f- (ZL) -+ f+ (In)] / 2. In the other limit- 

ing case Ied condition (3.8) takes form (3.9). Here for a successful search X must have 
greater superiority in velocity. Then, according to (3.71, al-’ --. 0, so that the "fields" 

are practically not there. 

A. 
Let us analyze the search method, somewhat different from 

the one in Sect.2, shown in Fig.2. Object X starts to move at 
.T. 

.Q 

point Ao along r to the left up to point B, with coordinate 
52 = x2- + h. Next, X moves to the right along the straight 

line .z* = Is- + h up to point B, or, and then from it along 

/ .‘i 
r up to point Bs with coordinate z~=z~-~+- 2h. After this X 

moves dLong the straight line z2 = z,- + 2h to tnc left uF' to r, 

and sc 01:. The motion takes place at velocity u and ends at 

D oyx 
d :;, point A,. We go on to determine the conditions and the values 

of h( 1 under which this search method solves Problem 1. 

Is,4 

85 
h To avoid observation Y must intersect one of the segments 

82 J~J~,+, along which X moves, in such a way that the inequality 
A0 Xl- 2 1 is observed at all times. The most advantageous inter- 

Fig.2 section point for Y is close to r, since it is here that X 
spends the longest time between motions to the left and to the 

right while scanning. For definiteness let us consider the situation close to the left branch 

of the boundary. We replace the segments of r above point Bi+s and below point Bi by segments 

of the straight line B1Bi+3 forming an angle cp with the z,-axis, 1 ‘p I< n / ?. (Fig.3j.Because 
the domain D is convex, such a replacement of the boundary can only broaden the possibilities 

for object Y. 
We first consider the case O<;<(n/2 (Fig.3a). Let 1-r 

v, r 

@ 

be a point on BiBi+s, located at distance 1 from the straight 

5 6 112 line BtBi+l and X, be the base of the perpendicular from Y, on- 
,+.I to B#i+l - At the instant that objectX arrives at X, the ob- 

1 h ject Y, in order not to be detected, must be located to the 

r I, d right of and above Yron Fig.3,a. Suppose thatX has travelled 

YZP a ,ll 
the path XIBi+lBt+PB2+3. Object Y, in order to avoid detection, 

must, at this time, be found to the left of and below a point 

Y‘B XI r*J 9 I.: 

$ 

Y, on BiBl+s, where Y2BlfS = 1. Let us count the times t, 
and tz needed by X and Yto cover the trajectories X B. B. 1 LC1 1+2 Bifa 
and Y,Y,, respectively, allowing for BIBi+, <d 

8, 

'r, r b 
a:.? 

tr < [2d + h - (I + h) t:cp1 U-’ 
(4.1) 

Fig.3 
t, = (Y,Bi+s f YqBi+,) V-’ = [(Z - h) (CO9 up)-' f lI V-’ 

The condition for a successful search is tl< t,, which, with 

due regard to (4.1), yields 

vu-r< $((cp) = (1 - h + 1 cos cp) I(2d + h)cos ‘F - (4.2) 

(I + h) sin cpl-’ 

We can verify that 11'(m) >O when h<l; therefore, (4.2) is automatically fulfilled for all 

cpE[O,n/21 if VU-l<$(0), i.e. 

VU-’ < $ (0) = (1 - h / 2) (d + h I 2)-l (4.3) 

When 'p E(--n/2,0) the situation is shown in Fig.3,b and is analyzed analogously. For a 
successful search the time t,taken by X to cover trajectory BiBI+lBt+,X, must be less than the 
time t, taken by Y on Y,Y,. As a result we obtain the same relations (4.1) and (4.2) but 
with 'p replaced by --. Therefore, (4.3) is a sufficient condition for a successful complet- 
ion of the search. If (3.9) is fulfilled, then (4.3) is fulfilled for a sufficiently small h 

and the search method indicated is successfully completed. For this the magnitude of h must 
be taken from the interval 

0 < h< 2 (I - wd) (1 + w)-', w = VU-‘< Id-’ (4.4) 

ensuring the fulfilment of (4.3). For the method given the search time T equals 

T = L (D, h) U-’ = Sh-‘U-’ + 0 (1) (4.5) 

Here L (D, h) is the length of curve AoBIB, . . A,, a function of domain D and number h. As 
h+O it asymptotically equals Sh-‘, where S is the area of D. 

5, We turn to the search problem in a three-dimensional (n = 3) convex closed bounded 
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domain D under constraints (1.4) and (1.5) and under the observation condition (1.7).We select 

a Cartesian coordinate system O~+pt such that the area of the projection ofD onto the plane 

0x1x2 is minimal. We draw the planes 13 = ib,h,< 1, i = O,rtl,f2,..., and we denote the sect- 

ion of D by the i th plane by Di. We prescribex's motion as follows. In each plane x3 = ib 
forming a nonempty intersection Di withD the pointX moves as described in section 4 (Fig.Z), 

scanning the planar domain D1 with step h. After this X passes to the next layer Xi =(i+ 1) 

h?, along the boundary of domain D, and scans domain Di+,, and in this way looks over all 

planes with nonempty Di. The direction of scanning domains D, changes when passing from 

layer to layer: from point A0 to A, for odd i, as in Fig.2, and from A,to A0 for even i. Object 
X passes from layer to layer along the shortest curve lying on the boundary of domain D and 

joining the corresponding points A0 (or A, ) of the adjacent layers. 

As the scanning parameters we select h E 10,211 and h,,~ LO, 21, starting from the require- 
ment that the inequality XY< 1 be fulfilled at some instant for any intersection of Y with 

some section Di. For simplicity we consider a cylindrical domain D for which all the sections 

Di coincide with the projection D, of domainD onto the plane 0x,x,. When moving in Di the 

objectX approaches each point of Di at a minimal distance no greater than h/2. Consequently, 

for Y not to be detected it must be found at a distance no less than (1*-h'/ 4)‘/2 from the 

plane r3 =iho at some instant t = T1 . In exactly the same way, as X moves along D,,, the 

object Ymust be at the same distance from plane q = (i + l)ho at some instant t = T? to avoid 
detection. Consequently, to avoid detection Y must surmount a strip of width 2 (12-hz/ 4)'!1-h,, 

in a time r2 - r1 for which the estimate 

ra - r1 < [ZL (D,, h) + h,l u-’ 

is valid. Here we have used formula (4.5). Therefore, if the inequality 

12 (1' - h2 / 4)'/~ - ho1 I/‘-’ > 2 [L (D,, h) + &I U-’ (5.1) 

is valid, the search is successful. Condition (5.1) is fulfilled if 

w = VU-’ < (1’ - h’/4)‘i:[L (D,, h)]-’ 

0 <ho < 2 [(lz - h2 / 4)"~ - WL (D, h)] (1 + w)-' 

(5.2) 

The first inequality in (5.2) contains a parameter h that is appropriately chosen to maximize 

the right hand side of this inequality with respect to h E [0,211. The step h, is then select- 

ed in conformity with the second inequality in (5.2). 

In case 12<S, where S is the area of D,, formulas (5.2) simplify. From (4.5) we 
obtain a sufficient condition for a successful completion of the search and the optimal step 
h = h, 

v/u<s-‘ma OChszr Ih (P - h2/4)‘/:] -= 1°F’, h, m= lb/Z 
(5.3) 

By (5.2), (5.3) and (4.5) the step h, must be selected from the interval 

0 < h, < v? (1 - US-‘) (1 + w)-' (5.4) 

Relations (5.3) and (5.4) are valid when l"< S for an arbitrary, not just cylindrical,domain 

D. Estimating the total search time by using (4.5), (5.3) and (5.4),we obtain T- 9 (h,,h,U)-’ 
when l"<S, where Q is the volume of domain D. 

6, Let us consider the search problem with constraints (1.4) and (1.5) under the possib- 

ility of direct sighting (1.8). Let barrier E be a convex bounded domain, with the closed 

domain D as its exterior. Thus, domain E is impermeable both to motion as well as to observa- 

tion. In the plane case (u=Z) Problem 1 has a solution, obviously, if an only if u > v. 

The solution is elementary: X starts on the boundary of E and moves along it with velocity U 

on any side. After time T = L (U - V)_'. where L is the length of E'S boundary, X andYare nec- 

essarill within direct sight. This solution of Problem 1 is optimal, i.e., it is as well a - 

solution of Problem 2. When V> (I object Y can always move so as to be hidden behind barrier 
E. 

In the three-dimensional case (n=3) the solution of Problem 1 with conditions (1.4),(1.5) 

and (1.8) is substantially more complex than in the two-dimensional one. Let us construct it 

for a spherical domain E of radius r, impermeable to observation and to the motions of X and 

Y. Without loss of generality Y can be constrained to move only on the surface of sphere E. 
As a matter of fact, along with Y's arbitrary motion in the exterior of the sphere we consider 

the motion of its projection Y' onto sphere E. The velocity of projection Y'does not exceed 

that of Y; therefore, this motion is admissible. On the other hand, if.7 observes Y', it ob- 

serves Y itself as well; the converse is not true. Therefore, it is more advantageous for Y 

to move along the surface of sphere E than outside it. 
We specify X's motion as a scanning (with velocity U 1 of a sphere of radius R> r con- 

centric with sphere E. We set 

8 = ntT-‘, 17~ = Rf3’ = nRT-‘< U, t E [O, Tl 
(6.1) 

DA = (Us - Uoz)'i~ = Rk' sin 8, h (0) = 0 
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where 0 E [O,nl is the lattitude, h is the longitude, and time 1' is chosen sufficiently large. 
At each instantX can observe a segment of E's surface with angular radius JJ ~= BPC coS(r&'). 

The center X'of the segment moves on sphere B along spiral (6.i). Object Y will be detect- 
ed if in X's revolution time it is unable to intersect a loop of the spiral, having avoided 

observation. For a successful termination of the search it is sufficient that this condition 

be fulfilled at the equator where the time of revolution along a loop is maximal and equals 

t,=2nRU-’ as T-cm. 
Let the segment's center X' move uniformly along the equator of 

B 

sphere E (T + cm), accomplishing a revolution in time t,. Object Y 

v, must intersect the equator, having avoided falling into the segment. It 

1' a 
can be shown that the minimal t 1 in which this is possible to realize 

if Y moves along an arc YY 1 2 of a great circle intersecting the equator 

at an angle 7. L arc COS (w-1). Figure 4 shows the segment and its 
v, center X' over equal time intervals t,, as well as the optimal path 

of 1'. If the time te = Zryl/-1 for Y to go fromY,to Yz is less than 

Fig.4 t1, then Y escapes observation. However, if t, <t2, i.e., JCVN-' < y 

ens r, then the search is completed successfully: y : arccos(rR-1). 
Computing the maximum over j,~(O,n/2), we obtain sufficient conditions for a successful com- 

pletion of the search 
VU-’ (0.179, y ~= O.%O, Rr-' = (cos ?)-I =y I.534 (6.2) 

Thus, if the first inequality in (6.2) is fulfilled, the proposed search method (6.1) solves 

Problem 1 when T is sufficiently large. The sphere's radius should be selected in accord with 

(6.2), which also yields the magnitude of the corresponding angle v. We notice that the seg- 

ment's size increases with R, but the velocity of its motion decreases; the value of 11 found 

in (6.2) is optimal for X. 
In conclusion we remark that the simple search methods investigated in the paper are, in 

general, not optimal. The conditions obtained from them, guaranteeing successful completion 

of the search,are sufficient hut notnecessary.Itwould be of interest to construct optimal 

search methods solving Problem 2 and to obtain necessary and sufficient conditions for succes- 

sful search completion. 
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